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Abstract

Although the belief has been expressed that performance assessments are intrinsically

more fair than multiple-choice measures, some forms of performance assessment may in fact

be more likely than conventional tests to tap construct-irrelevant factors. As performance

assessment grows in popularity, it will be increasingly important to monitor the validity and

fairness of alternative item types. The assessment of differential item functioning (DIF), as

one component of this evaluation, can be helpful in investigating the effect on subpopulations

of the introduction of performance tasks. Developing a DIF analysis strategy for

performance measures requires decisions as to how the matching vatiable should be defined

and how the analysis procedure should accommodate polytomous responses. In this study,

two inferential procedures and two types of descriptive summaries that may be useful in

assessing DIF in performance measures were explored and applied to simulated data. All the

investigated statistics appear to be worthy of further study.

'I
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The recent reemergence of performance assessment methods has been described as

marking the end of a six-decade era of educational testing and the beginning df a new era of

assessment (Stiggins, 1991). Examples of nationwide testing and assessment programs that

include polytomously scored performance tasks are the College Board Advanced Placement

tests, the National Assessment of Educational Progress (NAEP) writing, reading, science, and

mathematics assessments, the Praxis Series (successor to the NTE teacher assessment), and

the ACT College Outcome Measures Program and Workkeys assessments. Among the

challenges offered by the newfound popularity of performance assessment is the need for

psychometric procedures for assessing validity, reliability, and item properties, including

differential item functioning (DTP). This paper addresses the topic of DIF procedures for

performance tasks.

Although the belief has been expressed that performance assessment provides a more

equitable approach to testing than multiple-choice measures (see Hambleton & Murphy,

1992), some forms of performance assessment may in fact be more likely than conventional

tests to tap construct-irrelevant factors. For example, some uses of portfolios may provide an

advantage to students who have access to high-quality materials, good opportunities for study

at home, and motivated and highly educated parents who can provide assistance. Thus,

socioeconomic factors may play an undesirably large role in determining the quality of the

portfolio. Also, when item responses are scored by raters who know the identity of each

respondent or who can guess the respondent's gender or ethnicity, rater bias can occur. For

example, if respondents tend to receive higher scores from raters of their own race (see

Opp ler, Campbell, Pulakos, & Borrnan, 1992), then respondents who are scored by same-race

6
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raters will have an unfair advantage. There is evidence that adding performance sections to

an existing test can, in some instances, lead to larger mean differences among ethnic groups

(Dunbar, Koretz, & Hoover, 1991). Larger observed differences may occur either because

groups are, in fact, more different in terms of the newly defined construct or because of

construct-irrelevant factors. As performance assessment grows in popularity, it will be

increasingly important to monitor the validity and fairness of alternative item types. D1F

analysis procedures, as one component of this evaluation, can be helpful in investigating the

effect on subpopulations of the introduction of performance tasks.

In this article, we first discuss DIF analysis for dichotomous items, focusing on the

Mantel-Haenszel (MH; 1959) approach developed by Holland and Thayer (1988). We then

discuss some general issues that must be addressed in developing DIF analysis methods for

performance tasks. Following this, we describe two promising inferential procedures, along

with summary statistics, for this type of DIF analysis. Next, we describe the simulation study

we used to evaluate the DIE methods, as well as a feasibility study based on real data.

Finally, we present our conclusions about the accuracy and utility of the methods.

Assessing DIF in Conventional Multiple-Choice Tests

Several methods are currently in use for assessing DIF in dichotomous items,

including approaches based on item response theory (e.g., Thissen, Steinberg, & Wainer,

1988), logistic regression (Swarninathan & Rogers, 1990), standardization (Dorans & Ku lick,

1986), and the MH procedure (Holland & Thayer, 1988). We focus here on the MH, which

has gained wide acceptance as a useful method. In a typical application of the MH method,
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observations are stratified on overall test score, 5, and performance on an item of interestthe

studied item--is compared for the reference and focal groups, conditional on score. The focal

(F) group is the population of primary interest, such as women or members of ethnic

minorities. The reference (R) group is the population to which F group item responses are to

be compared. (The findings of Holland and Thayer, 1988; Zwick, 1990; and Donoghue,

'Holland, & Thayer, in press, support the inclusion of the studied item in the matching

variable in the dichotomous case. Inclusion of the studied item in the matching variable in

both the dichotomous and polytomous cases is discussed in more dctail in subsequent

sections.) Let Xi designate the score on the item of interest, where a score of 1 indicates a

correct answer and a score of 0 indicates an incorrect answer. G is a group membership

variable, where G = F or R. Let sk represent the score in the kth level of the matching

variable, k = 1, 2, ..., K. The MH approach approximates the uniformly most powerful

unbiased test of the hypothesis

= lIS = sk, G =

Ho' = cc = 1, k = 1, 2, ..., K [1]
P(X; 1IS sk, G

P(X; OIS = sk, G =

versus the alternative,

P(Xi = lIS = sk, G =

P(Xi = OIS = sk, G =
H1: cc, a 1, k = 1, 2, ..., K.

P(Xi = 1 IS = sk, G = .F)

13(Xi = 015 = sk, G =

(Holland & Thayer, 1988).

[2]



Assume that the data are organized as a2x2xK contingency t;.ble. Within the kth

level of the matching variable, Ak and Ck are the numbers of examinees in the R and F

groups, respectively, who answer the item correctly, Bk and Dk are the numbers of examinees

in the R and F groups, respectively, who answer the item incorrectly, nRk and nFk are the

numbers of examinees in the R and F groups,

6

mlk and MOk are the numbers of examinees who

answer the item correctly and incorrectly, and n.,k is the total number of examinees.

The MH chi-square statistic, which has a chi-square distribution with one degree of

freedom under Ho, is

MH
(1 Ak - F.(Ak)I .5)2

V(A.k)
[3]

nRk Mlk nRk nFk mlk 7720k
where E(A) and V(4k) The subtraction of .5 in the numerator

2n+4k n..k (nk 1)

serves as a continuity correction.

The MH estimator of the common odds ratio, a, is

E Ak Dkl n,+k

IB C/nk rk

A measure of DIF that has become quite common is

[4]

MH D-DIF -2.35 ln [5]
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This resealing of the MH log odds ratio places it on the Educational Testing Service (ETS)

delta scale of item difficulty (Holland & Thayer, 1985).

Assessing DIF in Performance Tasks

Whereas well-established DIF procedures exist for dichotomous items, there is not yet

a consensus about how to conceptualize or measure DM when the outcome of interest is not

simply a 1 or,O, but a judgment of the quality of a writing portfolio, mathematical proof, or

scientific experiment. Usually, such judgments are ordered, but in some instances, "scoring"

an item may consist of determining which of several unordered solution strategies characterize

the response. Developing a DM analysis strategy for performance tasks requires that two

major issues be addressed:

1. How should the matching variable be defined?

2. How should the analysis procedure accommodate the polytomous responses?

Each of these is addressed in turn. Other discussions of DM methods for polytomous items

are given by Dorans and Schmitt (1991), Hanson (1992), Miller, Spray, & Wilson (1992),

Welch and Hoover (in press), and Zwick (1992a, 1992b).

Definition of the matchine variable

Defining an appropriate matching variable for performance tasks is less than

straightforward. A fundamental problem that arises is that an entire performance assessment

may consist of very few tasks--possibly a single item. One option in this case is to match

subjects using a measure that is external to the performance assessment, such as the score on

1 0
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a multiple-choice test in the same subject area. This type of strategy is possible, for example,

using data from the Advanced Placement examinations, which typically consist of multiple-

choice and essay items in the same field of study. This matching strategy has been criticized,

however, on the grounds that the multiple-choice portions of an exam may not assess the

same attributes as the performance tasks (hence the need for the latter) and therefore may not

be an appropriate basis for a matching variable. Even when responses to a substantial number

of performance tasks are available for each examinee, the summation of these responses to

form a matching variable may be objectionable because of concerns about dimensionality: A

set of complex performance tasks may not be as highly interrelated as a typical set of

multiple-choice items. A technique that may be helpful in constructing a matching variable in

performance assessment is to make use of available demographic and attitude information,

possibly in combination with scores on the set of performance tasks. A possible strategy for

combining multiple measures into a single composite matching variable is propensity score

matching (Rosenbaum and Rubin, 1985; see Zwick, 1992b for a DIF application).

Because we chose to focus our work on the DIP analysis methods themselves, we did

not consider in detail the important issue of selecting a matching variable. In our simulation

and real data applications, we matched on the score on a test that consisteri of both

dichotomous and polytomous items. We investi&v a sfweral ways of computing this test

score. First, we considered the effect of resealing the scores on the polytomous items, which

has been suggested as a way of ensuring that such items do not make a disproportionate

contribution to the matching variable. We also evaluated the effect of excluding the studied
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item from the matching variable. Some relevant theoretical considerations are given in the

following section.

A Theoretical Perspective on Computation of the Matching Variable. In the

dichotomous case, Holland and Thayer (1988) showed that under certain Rasch model

conditions, identity of item response functions (IRFs) across groups for the studied item

satisfies the MH null hypothesis (Equation 1) and a difference in IRFs across groups

corresponds to the MH alternative hypothesis (Equation 2). The assumptions under which

this finding holds are that (1) within each of the groups (R and F), the item response

functions follow the Rasch model, (2) the matching variable is the number-right score based

on all items, including the studied item, and (3) the items have the same IRFs for the two

groups, with the possible exception of the studied item. Under these conditions, the odds

ratios ak in [1] and [2] are equal to exp (bF - bR), where bF and bR are the Rasch item

difficulties for the R and F groups, respectively.' The quantity exp (bF b) is constant

across all levels of the matching variable and is equal to one when the R and F groups have

the same IRF. Zwick (1990) showed that the correspondence between IRF and MH

definitions of DIF could not be assured to hold for a more general class of item response

models, a finding that was confirmed empirically by the work of Donoghue, Holland, and

Thayer (in press).

'This formulation applies to the case in which all item discrimination parameters are
equal to unity and the scaling factor of 1.7 is not included in the item response function.

12
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However, the theoretical findings of Zwick (1990) and the empirical results of

Donoghue, Holland, and Thayer (in press) showed that inclusion of the studied item in the

matching variable clearly improves the behavior of the MH odds ratio even when the data are

generated by non-Rasch models (the three-parameter logistic [3P1.,1 in Donoghue, Holland, &

Thayer, and an even more general class of models in Zwick). Both studies showed that when

no DIF is, in fact, present, departure of the MH odds ratio from its null value will be

minimized by inclusion of the studied item. For DIF analysis of dichotomous items, these

findings provide a strong justification for including the studied item, regardless of the

presumed data generation model.

In attempting to extend the findings from the dichotomous case to polytomous items,

it is useful to consider Masters' (1982) Rasch model for partial credit scoring. Assume that a

particular task or item is scored on a scale with T = M + 1 ordered categories ranging from 0

to M. According to the partial credit model, the probability of receiving a score of x on item

i for an examinee with proficiency B is given by

exp E (0 - )
m.0

8.,
X = 0, 1, ..., M.

M p

exp E (0
p.0 m.0

(6]

where 8.il represents the difficulty of making the transition from category m - 1 to category m

0

and E (E) - is assumed to be equal to zero by convention. Although the response
m-0

categories are ordered, the difficulty parameters 8,i need not be. For example, the transition

from category 1 to category 2 may be more difficult than the transition from category 2 to
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category 3. In the discourse below, the subscript R or F is appended to-the 8, and the 11x1

from [6] to distinguish the values for the reference and focal groups.

The item response functions [6] for the partial credit model are of the same general

form as the Rasch model for dichotomous items and Masters showed that the simple sum, S,

of the item scores is a sufficient statistic for ability in the partial credit model, just as in the

dichotomous Rasch model. (See Zwick, 1990 for a discussion of the relevance of sufficient

statistics in this context.) The findings of Holland and Thayer (1988) can be generalized to

the partial credit model as follows. Assume that all items follow the partial credit model and

that all items, except possibly the studied item, are free of DIF, Consider two scores on the

studied item, xo and x0 + q. The odds ratio for these item scores, conditional on S, can be

shown to be equal to

x0+q x0+q

exp I miF
Z 8miR

m...1
°

[7]

As in the dichotomous case, this quantity is constant across levels of the matching variable

(satisfying the analogue to [2]) and is equal to one (satisfying the analogue to [1]) if the ratio

of the IRFs for the two scores is the same for the R and F groups; that is, if

n n . As in the dichotomous case, conditioning on the simple sum of
(x0+q)sR x0iR (x0+q)iF x0iF

the item scores leads to a desirable concordance, in the population, between a definition of

DIF based on odds ratios and a definition based on IRFs.2 Thus, there is some theoretical

2 Note, however, that this definition of DIF applies to only the pair of categories in
question. For example, suppose we have a three-category item with 81ip- = 8liR cl 82iF = 82iR,
and 53iF = 53iR - C. Then for categories 2 and 0, the expression in [7] will be equal to unity

14
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support for calculating the matching variable in the polytomous case by simply summing the

scores on all the items, including the studied item?

Extensions of MH Analysis Methods to Accommodate Polvtomous Items

Two elaborations of the MH procedure appear to be promising for the assessment of

DIF for polytomous items: Mantel (1963) proposed an extension of the MH procedure for

ordered response categories which involves comparing the means for two groups, conditional

on a matching variable. In addition, Mantel and Haenszel (1959; see also Somes, 1986)

presented a generalized MH statistic (GMH) that is a direct extension of the ordinary MH to

the case of T > 2 response categories. (The case of more than two groups was also

considered by Mantel and Haenszel, but will not be addressed here.) The GMH statistic does

not explicitly take into account the possible ordering of response categories; rather, it provides

for a comparison of the two groups with respect to their entire response distributions,

conditional on a matching variable. A general form of the MH statistic that subsumes both

the Mantel and GMH procedures was given by Landis, Heyman, and Koch (1978; see also

Agresti, 1990, p. 286). The goal of the current research was to investigate the utility of these

extended MH methods 'and to determine whether interpretable indexes of DlF could be

developed to supplement the results of the statistical hypothesis tests. The two MH

(i.e., DIF "balances out," as despribed in the simulation description below). However, for the
category pairs 0 and 1 or 1 and 2, [7] will not equal unity.

'It is not clear how to include the studied item in the matching variable if the item has
unordered scoring categories.
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extensions were programmed by Donoghue for this study. Both are also included in SAS

PROC FREQ (SAS Institute, Inc., 1990) under the heading of "Cochran-Mantel-Haenszel

(CMH) Statistics."

Mantel Approach for Ordered Response Categories. Mantel (1963) proposed a one-

degree of freedom test of conditional association for the case of ordered response categories.

Application of the method in the DIP context involves assigning index numbers to the

response categories and then comparing the item means for members of the R and F groups

who have been matched on a measure of proficiency. Welch and Hoover (in press)

conducted a simulation study of the utility of this statistic for DIF analysis and Holland and

Thayer (Holland, 1991) also investigated its use. The data are organized into a2x TxK

contingency table, where T is the number of response categories and K is the number of

levels of the matching variable. At each of the K levels, the data can be represented as a 2 x

T contingency table like that shown in Table 1.

Insert Table 1 about here

The values, y1, y2, ..., yr represent the T scores that can be obtained on the item (possibly, but

not necessarily, the integers 1, 2, ..., 7). The body of the table contains values of niza and n

which denote the numbers of R and F group members, respectively, who are at the kth level of

the matching variable and received an item score of yr A "+" denotes summation over a

In recognition of the fact that Cochran (1954) developed a procedure very similar to the
Mantel-Haenszel test, some authors use the term, "Cochran-Mantel-Haenszel statistics," to
refer to the MH test and its extensions.

16



particular index. For example, nF+k denotes the total number of F group members at the kth

level.

The statistic proposed by Mantel, reformulated in the notation of this paper is

(E F E (F k))2

Mantel X2 = k
I Var (Fk)
k

where F k, the sum of scores for the focal group at the kth level of the matching variable, is

defined as

Fk = I y: nnk .

:

The expectation of Fk under the hypothesis of no association (H0) is

and the variance of Fk under fic, is

Var(Fk) =

E (Fk) =
nF+k

nk r

lt

2
{(n+fk I yt nk) yr n.,k)2}.

n k nF.k
2

nk (n..k 1)

Under 1/0, the statistic in [81 has a chi-squared distribution with one degree of

freedom. In the case of dichotomous items with scores coded 0 and 1, this statistic is

identical to the Mantel-Haenszel (1959) statistic without the continuity correction. In D1F

17

14

[8]

[9]
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applications, rejection of 1/0 suggests that members of the R and F groups who are similar in

overall proficiency nevertheless tend to differ in their performance on the studied item.

Welch and Hoover (in press) used data generated from the Masters (1982) partial

credit model to compare the Mantel procedure to two combined t-test procedures. All DIP

was of the constant variety; that is, all transitions from a given item score category to the

next highest category were assumed to be more difficult for the focal group, and the degree to

which they were more difficult was constant across score categories. (See the simulation

section below for further discussion of this type of DIF.) Ability distributions were assumed

to be normal. The matching variable was the number right based on simulated responses to

71 dichotomous items. The factors that were varied across simulation conditions were the

focal group mean, the R and F group sample sizes, and the magnitude of D1F in the studied

item. Overall, the Mantel procedure was somewhat less likely to detect DIP than the other

two methods. However, the Type I error rates for the combined t methods were more likely

to exceed the nominal level than that of the Mantel method, which displayed excellent Type I

error control.

GMH Statistic for Nominal Data. The test statistic for the GMH procedure is a

muhivariate generalization of [3] (see Somes, 1986). That is, Ak and E(Ak) are now vectors of

length T - 1, corresponding to (any) T - 1 of the T response categories, and V(Ak) is a T - 1

by T - 1 covariance matrix? In the notation of Table 1,

'If the marginal frequencies and any T - 1 of the cell frequencies are known (for a
particular level of the matching variable), then the remaining frequencies are determined.
That is, there are only T 1 nonredundant values.

18
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(nRIP 7R2k' ' nR(T-1)k)

E 14c) = nR.k nik n.ek ,

nk = (n
+1

n n
k2 +2k' ' +0.4-1)k) '

n++k diag nk nk n'k
V(A k) = nR.k nFsk

2n..k (n,,k - 1)
and diagnk is a 1) x (T - 1) diagonal inatrix with elements nk. The test statistic is

GMH x2 = [z Ak -ZE (11 [E 11(Ak)]' Ak-ZE (.4k)]

The statistic in [10] has a chi-squared distribution with T - 1 degrees of freedom under 1/0.

For dichotomous variables, it reduces to the statistic in [3] without the continuity correction.

As noted earlier, the GMH statistic does not explicitly take into account the possible ordering

of response categories; instead, it provides for the comparison of the two groups in terms of

their entire response distributions, rather than their means alone. The odds that focal group

members will be assigned a particular score category can be compared to the odds for the

reference group, conditional on the matching variable. This approach could be particularly

useful in conducting distractor analysis, in assessing the propensity to omit, or in analyzing

the occurrences of particular types of solution strategies, which may be unordered.

Descriptive Statistics for the Mantel-Haenszel Extensions. In addition to investigating

hypothesis testing procedures, we examined the utility of various descriptive statistics

analogous to [4] or [5] for the MH extensions. A possible summary statistic for the Mantel
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(1963) approach is the standardized mean difference between the R and F groups proposed by

Dorans and Schmitt (1991). This approach is analogous to the standardization statistic

developed by Dorans and Kulick (1986) for the case of dichotomous items. The statistic

compares the means of the R and F groups, adjusting for differences in the distribution of R

and F group members across the values of the matching variable. The proposed statistic is

labeled SMD for "standardized mean difference" in the present paper. Reformulated in the

notation used here, it is defined as follows:

SMD pn mn Z pFk mgk ,

4kwhere PFk =
nFis the proportion of focal group members who are at the leh level of the
nF*4

matching variable, mFk 1 (E yr /Ink) is the mean item score for the focal group at the Icth
nF+k t

level, and mfik = 1 I E z nizik) is the analogous value for the reference group. A standard
71124k \

error formula for SMD is derived in Zwick (1992a).

As in the Dorans and Kulick (1986) standardization statistic, the first term of [11] is

just the grand mean of the item scores for the focal group. The second term is the mean item

score for the reference group, "standardized" to give the reference group the same distribution

across levels of the matching variable as that of the focal group.' A negative SMD value

implies that, conditional on the matching variable, the F group has a lower mean item score

'In the SMD statistic, as in the STD P-DIF statistic, alternative weights can be substituted
for the pFk values on the right-hand side of Equation 11.
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than the R group. The calculation of SMD may help to make the results of Mantel's

approach more interpretable to the user.

Developing a useful index of DIF to supplement the GMH x2 statistic appears to be a

more difficult task. With two groups and T response categories, the GMH yields T - 1

independent estimates of conditional odds ratios analogous to the single conditional odds ratio

associated with the ordinary MH. Suppose, for example, that an item has four possible score

levels. The item could be an essay that is graded on a 0 to 3 scale or a mathematics problem

with four unordered solutim strategies, arbitrarily numbered 0 to 3. Consider R and F group

members who are matched on overall test score. Regard an item score of 0 as a baseline and,

for each of scores 1 through 3, consider the odds of receiving that score versus a score of 0.

These odds can be estimated for both R and F groups, resulting in three conditional odds ratio

estimates. The T - 1 conditional odds ratios can be estimated in various ways, including the

similar statistics proposed by Mickey and Elashoff (1985) and Yanagawa and Fujii (1990) for

biostatistical applications. The utility of these summaries in the DIF context was examined.

Only the Yanagawa and Fujii statistics are described and reported here because they appeared

to approximate more closely their theoretical values. (As described in the results section,

both statistics produced inflated values.)

Let nGik be the number of observations in group G, G = R or F; score category t, t = m

or p; and level k of the matching variable, k = 1, 2, ..., K. Let n,.k be the total number of

observations in level k, and T = M + 1 be the number of score categories, labeled 0 through

M. The usual estimator of the conditional odds ratio for categories m and p is

21



K nz RM/C Fpk
Kz n

Rple 'Fmk The Yanagawa and Fujii statistic for category p can be

n 0.

19

[121

mp
km1

expressed as

17p = exp{

1/4

m

E In
m-o

r -N

CC;
demo\

where amp' is a more efficient estimator of amp obtained by applying an adjustment to amp

(Yanagawa & Fujii, 1990).7 When there are only two score categories, 0 and 1, YF1 = amn

(Equation 4).

In calculating these statistics, computational problems arose because of empty cells in

the 2 x 2 x T tables. Therefore, the quantity .5 was added to each cell entry, as

recommended by Gart (1962). More sophisticated smoothing techniques, such as those

outEned in Bishop, Fienberg, and Holland (1975), could be used instead. The variances of

these estimators were not computed, but are approximated by the variability across

replications of the statistics in our simulation.

Simulation Study

To evaluate the performance of the methods when the properties of the data were

known, a simulation was conducted and the two DIF methods were applied. Although the

GMH method does not require that response categories be ordered, we focused on comparing

the two methods when ordering did, in fact, exist. In each simulation condition, the total

'The adjustment, given in Yanagawa & Fujii, 1990, p. 746, Step 4, contains an error.
Using the parameterization presented in the article, the correction term must be subtracted,
rather than added, to duplicate the results reported by Yanagawa and Fujii.

22
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number of test items was 25. Twenty-four of these (the core items) were used only in

computing the matching variable; the 25th was the studied item. The factors that were varied

across the simulation conditions were focal group ability distribution (2 levels) and

characteristics of the studied item (27 levels). The item properties that defined the 27 levels

included the difficulty parameters (8,i), pattern of DIF, and magnitude of DIF.

In designing our simulation, we chose the test length, mean difference between groups,

and group sample sizes to resemble conditions that occur in actual DIF analyses at ETS. We

chose DIF magnitudes that appeared to be realistic, based on previous research on DM in

dichotomous items. Welch and Hoover, in press, examined a wider range of DIF magnitudes,

including much more extreme conditions than ours. In selecting patterns of DT for our

study, we included the constant DIF pattern examined by Welch and Hoover, as well as

several other patterns that have been conjectured to be plausible.

The 2 x 27 = 54 simulation conditions were crossed with four ways of computing the

matching variable. The four methods varied in terms of whether scores on polytomous items

were rescaled in computing the matching variable (2 levels) and whether the studied item was

included in the matching variable (2 levels). One hundred replications were conducted for

each of the 54 x 4 = 216 combinations of simulation conditions with ways of forming the

matching variable. The simulation design is summarized in Table 2. The properties of the

simulated data are described in detail in the following sections.

Insert Table 2 about here
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The statistics that were recorded for each studied item in each replication were the

Mantel and GMH x2 statistics (Equations 8 and 10), the SMD statistic, (Equation 11), and the

Yanagawa and Fujii (1990) statistic (Equation 12).

Reference and focal groups. In each condition, samples of 500 observations were

drawn from the R and F distributions. The reference group distribution was standard normal

(i.e., N(0,1)) in all conditions; the focal group distribution was either N(0,1) or N(-1,1).

Test specifications and item response models for core items. The first 24 of the 25

items in the test were used only in computing the matching variable. Items 1-20 were

dichotomous and items 21-24 were four-category items. These 24 items were free of DIP.

For the dichotomous items, data were generated using the 3PL model. The item

parameters were intended to be representative of values obtained in calibrations of operational

test data. The a parameters were based on findings of Stocking (personal communication,

April, 1992). She has found that empirical a parameters are well represented by the log-

normal distribution, aexp(z), with zN(-.065,0.13). Five a values were chosen (0.638, 0.741,

0.861, 1.000, 1.162), corresponding to mean, z =1.tz ± 0.5az, and p, ± 1.0. The b parameters

were spaced uniformly from -2.25 to 2.25, separated by 0.25, with an additional value of 0.0.

The b parameters were then sorted and formed into groups of five. One member of each

group was randomly matched to each of the five a parameters (i.e., a randomized block

design was used). The lower asymptote c was set to 0.15 for all items. The parameter values

for the dichotomous items (1-20) are given in the upper panel of Table 3.

24



22

For the polytomous items, data were generated according to the Masters (1982) partial

credit model (Equation 6). Parameters for items 21-24 were selected from the item parameter

estimates from an analysis of a developmental screening test reported in Masters' article.

They are listed in the lower panel of Table 3. Parameters for the studied items are discussed

in the next section.

Insert Table 3 about here

Characteristics of the Studied Item. As noted above, the first 24 items in each

simulation condition were free of DIE and the 25th item played the role of the studied item,

which could potentially have DIF. The studied item always had four categories. DIF was

modeled by starting with a set of reference group difficulty parameters and then adding a

value to one or more of the item difficulties. We included three sets of reference group

parameters (designated A, B, and C), four patterns of D1F and two (nonzero) magnitudes of

DIF (.1 and .25), resulting in 24 types of DIF items. In addition, for each of the three sets of

reference group parameters, a null condition was included in which the studied item had the

same parameters for the R and F groups. Therefore, the total number of studied items was 24

+ 3 = 27. The three sets of reference group parameter values for the studied item, selected,

as above, from Masters' (1982) analysis of a developmental screening test, are given in Table

4.

Insert Table 4 about here
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The four patterns of DlF we considered were as follows:

(1) DIF that was constant across response categories: In this condition, all of the transitions

from a given item score category to the next highest category were assumed to be more

difficult for the focal group, and the degree to which they were more difficult was constant

across score categories; that is, 8.iF = + c, m = 1, 2, 3.

(2) DIF that balanced across score categories: In this condition, the transition from the lowest

to the second category was more difficult for the focal group, while the transition from the

third category to the highest category was easier for the focal group. The remaining

transition was the same for the two groups. That is, 8liF kr; 82iF = 821R, and 63jF = 83iR

C.

(3) DIF that affected only the lower score categories: In this condition, the transition from

the lowest to the second category was more difficult for the focal group. The remaining

-41iF 8 1iR c? 82iF 82iR1transitions were identical for the two groups ( and 83i, 83iR)

(4) DIF that affected only the higher score categories: In this condition, the transition from

the third to the highest category was more difficult for the focal group. The remaining

transitions were identical for the two groups (8liF 811R, 82iF = kiR, and 83iF = 831R +

Item parameters for the 27 studied items for the reference and focal groups are given

in Table 5.

Insert Table 5 about here
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Computation of the matching variable. Two aspects of the computation of the

matching variable were varied across conditions: The first was the relative weights given to

the dichotomous and polytomous items. In one condition, no resealing of item scores was

performed, so that the score range for the dichotomous items was 0-1, whereas the range for

polytomous items was 0-3. In the other condition, the score on the polytomous items was

resealed by dividing by 3; in this condition, the score range was 0-1 for both types of items.

The other aspect of computation of the matching variable that was varied was inclusion of the

studied item: The studied item either was or was not included in the summation of the item

scores. As noted earlier, if all items on the test follow the Rasch or partial credit models,

then (1) the simple sum of the item scores, including the studied item, is sufficient for ability,

(2) the resealed sum is not sufficient unless all items in the summation have the same number

of score categories, and (3) the (simple or resealed) sum of scores excluding the studied item

is not sufficient.'

Results and Discussion

The results of the study are given in Tables 6-8. Because the variation of results

across the three sets of reference group parameters did not appear to be meaningful, all results

have been averaged over the three sets.

8 The model we used for data generation departs slightly from the model for which the
simple sum of scores is sufficient in that some of the items in the matching variable were
3PL, rather than Rasch or partial credit items. Robustness findings from the dichotomous
case (Donoghue, Holland, & Thayer, in press) suggest this should make little difference. This
was borne out by our own findings in Tables 6 and 7.
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Table 6 presents chi-square results for the Mantel and GMH pro6edures in the null

case, averaged over the three sets of reference group parameters. The three 2 x 2 tables for

each procedure show the pairwise effects of inclusion of the studied item, resealing of

polytomous item scores, and focal group mean (-1 or 0, where 0 is the reference group mean).

Each mean chi-square in Table 6 is an average over 600 replications. In the null case, the

expected value of a chi-square statistic is its degrees of freedom (df = 1 for the Mantel and df

= 3 for the GMH procedure). Table 6 contains one of the main findings of our study: Our

results showed that, as in the dichotomous case, the studied item should be included in the

matching variable. Also, scores on polytomous items should not be resealed when calculating

the matching variable. Ignoring these guidelines leads to an increase in Type I errors.

The uppermost table for each procedure, which is averaged over the two levels of

focal group mean, shows clearly that the average chi-square is close to its expected value

when the studied item is included and when resealing is not applied. The standard deviations

of the chi-squares (see the top line of Table 7) were also close to their theoretical values of

1(2df) The average chi-squares were inflated, corresponding to an increased Type I error

rate, when resealing was used and even more so when the studied item was excluded. These

results are consistent with the dichotomous case and with the theoretical predictions based on

the partial credit model.

Insert Tables 6-8 about here

The middle and bottom panels of Table 6 show the effects of resealing and of

inclusion separately for the two focal group means. The results show that when the R and F
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means are the same, the use of inappropriate procedures to compute the.matching variable

does not have a detrimental effect, but when the means differ, the impact of the method of

computation is substantial. Again, this is consistent with the dichotomous case, in which

failure to include the studied item leads to distorted conclusions about DIF when the R and F

groups have different distributions, but not when they have identical distributions. The

effects of resealing and inclusion are strikingly similar for the Mantel and GMH procedures.

Because the results for the null case showed clearly that the appropriate method of

forming the matching variable is to take the simple sum of all item scores, including the

studied item, results for the non-null cases are shown for only this method. More research is

needed on other aspects of matching not considered here, such as multidimensional matching

variables, external matching variables, and matching variables based on non-cognitive data.

Table 7 presents the chi-square results for the non-null conditions, with the null results

from the appropriate cells of Table 6 included for comparison. The mean and standard

deviation of the chi-square values are given, as well as the rate of rejection of the null

hypothesis for cc = .05. The variation of chi-square results over focal group means was

inconsistent; therefore, results were averaged over this factor (as well as over the three sets of

reference group parameters). Each value in Table 7 represents the result of 600 replications.

Both the Mantel and GMH methods appear promising; the preference for one over the

other may depend on the type of DlF that is of most interest. Both chi-square procedures had

slightly conservative rejection rates in the null case. For the constant DIF conditions, which

involved the largest shifts in means between R and F groups, the Mantel procedure was more

powerful than the GMH, as expected. In the balanced DIF condition, the GMH was superior-
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-dramatically so for DIF of magnitude .25, where the percent of rejection was about 25 for

GMH, but only 4 for Mantel method. This, too, is consistent with expectation, since the

Mantel method is sensitive to mean differences, which are expected to be minimal in this type

of DM, whereas the GMH is sensitive to between-group differences in the frequencies of any

of the item scores. For the "shift low" and "shift high" conditions, in which DIF affected

only one category transition, the procedures produced similar rejection rates. For all DIF

patterns except the constant pattern, detection rates were very low (8% or less) for DIF of a

magnitude of .1. For constant DIF of .1, the rejection rates were about 18% and 11%,

respectively, for the Mantel and GMH methods. For DIY of magnitude .25, the rejection rates

ranged from 13% to about 76%, with one exception--the Mantel method in the balanced

condition, which had a rejection rate of 4%. (For the Mantel procedure, rejection rates in

both the null and non-null cases were somewhat smaller than those obtained in the Welch and

Hoover (in press) simulation under similar conditions. One possible reason for the difference

in results is that Welch and Hoover did not include the studied item in the matching variable.)

Table 8 presents the means and standard deviations over 600 replications of the SMD

and Yanagawa and Fujii (1990) statistics for the same DIP conditions included in Table 7. In

computing the YF statistics, the lowest item score (0) was used as the reference category, as

indicated in Equation 12, where alo appears in the denominator of the odds ratio. The

standard deviations across replications provide an empirical estimate of the standard errors of

these statistics. Under the null hypothesis, the SMD means were close to zero, as expected.

Like the Mantel chi-square, the SMD statistic was sensitive mainly to constant DT; it may

provide a useful supplement to the chi-square when this type of DIF is of interest.
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The T - 1 YF statistics per item provide a more detailed picture of the pattern of DIF,

but several aspects of these statistics require further study. In the null case, the YF statistics

should, in theory, be equal to unity. The observed YF means, however, were considerably

inflated. To explore further the behavior of the YF statistics, the theoretical values of the

statistics under the partial credit model were calculated using Equation 7 in combination with

Equation 12. Although the partial credit model does not hold here for all items in the

matching variable, these theoretical values do provide a reasonable guideline for evaluating

the size of the statistics. The theoretical values are given in Table 9. Although the observed

values were sometimes very close the their theoretical counterparts (as in the constant, .25

condition), the statistics were, in general, too large. The Mickey and Elashoff (1985)

estimates of the conditional odds ratios, not shown here, also tended to have inflated values.

This is especially surprising because the addition of .5 to each cell in the table, which was

performed because of sparseness, causes the odds ratio estimates to be closer to their null

values.

Insert Table 9 about here

An issue of interpretability that arises in computing the YF statistics is how to

determine which item score category should be the reference category. The lowest score (0)

was used in our study, but other choices may lead to more useful results. Also, although all

T - 1 conditional odds ratios may provide valuable information, it would be desirable to have

a single overall DIF index as in the case of dichotomous items. To make the SMD and YF

summaries maximally useful for test developers and users, some rules for categorizing the
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severity of DT, analogous to the MH-based rules that have been develdped for the

dichotomous case, will be needed.

In addition to using simulated data, we also applied the DIF methods to male-female

analyses of data collected in the 1990 NAEP reading and writing trend assessments (see

Johnson & Allen, 1992). The sample consisted of about 2,000 eleventh grade examinees who

were administered a combination of multiple-choice reading items, constructed response

reading items, and constructed response writing items. The constructed response items were

scored on an ordinal scale by trained readers. The main purpose of the NAEP analysis was to

assess feasibility. We wanted to make sure that no computational problems arose when real

data, rather than model-generated data were analyzed. No such problems occurred, and, in

general, the two test statistics behaved as anticipated. As would be expected with ordered

responses, it was not unusual to find items for which the Mantel procedure led to a

statistically significant result, while the GMH did not. It was interesting, however, to find

NAEP items in which the opposite occurred. In particular, on one essay item (scored on a 0

4 scale), the GMH procedure led to a statistically significant result for a comparison of males

and females, while the Mantel procedure did not. Conditional on the matching variable,

response distributions for the two groups were different on this item, but mean responses

were similar, as in the balanced DT condition in the simulated data. If the entire response

distribution, rather than merely the means, is of interest, the GMH may be the procedure of

choice even when the response categories are ordered.

As a final note, it must be remembered that DIF analyses, while they can be helpful in

investigating the effect on subpopulations of the introduction of alternative item types, are
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only one component of the extensive research that is needed on the validity and fairness of

performance assessment
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Table 1

Data for the leh Level of the Stratification Variable

Item Score

34

Reference

Focal
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Table 2

Factors Varied in the Study*
(Number and description of levels given in parentheses)

Simulation Conditions (54: 2 focal group means x 27 studied items)

Focal Group Mean (2: -1 and 0)

Characteristics of Studied Item (27: 3 sets reference group parameters x 9 DT
conditions)

Reference Group Parameters (3 sets: A, B, and C)

DIF Conditions (9: 8 non-null + 1 null:)

Non-Null (8: 4 patterns x 2 magnitudes)

Pattern of DIF (4: constant, balanced, shift low, shift high)

Maenitude of DIF (2: .1 and .25)

Null (1)

Method of Computing the Matchine Variable (4: 2 inclusion conditions x 2 rescaling
conditions)

Inclusion of Studied Item (2: included and not included)

Rescaling of Polytomous Item Scores (2: resealed and not rescaled)

100 replications were conducted for each of the 54 x 4 = 216 combinations of simulation
conditions with methods of computing the matching variable.
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Table 3

Parameters for Items in the Core Test (Items 1-24) .

Dichotomous Items

Item Parameter

a, bi c,

1 0.741 -2.25 0.15

2 0.861 -2.00 0.15

3 1.162 -1.75 0.15

0.638 -1.50 0.15

5 1.000 -1.25 0.15

6 1.000 -1.00 0.15

7 1.162 -0.75 0.15

8 0.638 -0.50 0.15

9 0.741 -0.25 0.15

10 0.861 0.00 0.15

11 1.000 0.00 0.15

12 0.741 0.25 0.15

13 1.162 0.50 0.15

14 0.638 0.75 0.15

15 0.861 1.00 0.15

16 0.638 1.25 0.15

17 0.741 1.50 0.15

18 1.162 1.75 0.15

19 1.000 2.00 0.15

20 0.861 2.25 0.15

Polytomous Items

Item Parameter

8it 8,, 8r4

21 -0.91 -0.93 1.29

22 -1.34 1.72 3.40

23 -1.76 0.09 0.19

24 -2.20 -1.33 -0.48

3 9
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Reference Group Item Parameters for Studied Items

Polytomous Items

Item Parameter

8i1 8, 8i1

A -0.91 0.98 0.21

B -2.25 -1.80 1.66

C -0.54 -2.11 0.74

4 0
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Table 5
Reference and Focal Group Item Parameters for Studied Items

Type of DIF Item
Reference Group Focal Group

8i1 P 8i,p 8 AR 8i1 F 8i7F I 8i1F

Null A -0.91 0.98 0.21 -0.91 0.98 0.21

B -2.25 -1.80 1.66 -2.25 -1.80 1.66

C -0.54 -2.11 0.74 -0.54 -2.11 0.74

Constant
.10

A -0.91 0.98 0.21 -0.81 1.08 0.31

B -2.25 -1.80 1.66 I -2.15 -1.70 1.76

C -0.54 -2.11 0.74 I -0.44 -2.01 0.84

Constant
.25

A -0.91 0.98 0.21 -0.66 1.23 0.46

B -2.25 -1.80 1.66 -2.00 -1.55 1.91

C -0.54 -2.11 0.74 -0.29 -1.86 0.99

Balanced
.10

A -0.91 0.98 0.21 -0.81 0.98 0.11

B -2.25 -1.80 1.66 -2.15 -1.80 1.56

C -0.54 -2.11 0.74 -0.44 -2.11 0.64

Balanced
.25

A -0.91 0.98 0.21 -0.66 0.98 -0.04

B -2.25 -1.80 1.66 -2.00 -1.80 1.41

C -0.54 -2.11 0.74 -0.29 -2.11 0.49

Shift Low
.10

A -0.91 0.98 0.21 -0.81 0.98 0.21

B -2.25 -1.80 1.66 -2.15 -1.80 1.66

C -0.54 -2.11 0.74 -0.44 -2.11 0.74

Shift Low
.25

A -0.91 0.98 0.21 -0.66 0.98 0.21

B -2.25 -1.80 1.66 -2.00 -1.80 1.66

C -0.54 -2.11 0.74 -0.29 -2.11 0.74

Shift High
.10

A -0.91 0.98 0.21 -0.91 0.98 0.31

B -2.25 -1.80 1.66 -2.25 -1.80 1.76

C -0.54 -2.11 0.74 -0.54 -2.11 0.84

Shift High
.25

A -0.91 0.98 0.21 -0.91 0.98 0.46

B -2.25 -1.80 1.66 -2.25 -1.80 1.91

C -0.54 -2.11 0.74 -0.54 -2.11 0.99
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Table 6

Effects of Inclusion of Studied Item (I)
Rescaling (R) of the Matching Variable, and Focal droup Mean (F)

on the Means of the Mantel and GMH Chi-Square Statistics in the Null Case
(Means Over 600 Rephcations)2

Mantel f (df = 1) GMH x2 (df = 3)

R R

no yes average no yes average

no 2.31 2.78 2.55 4.39 4.81 4.60

yes 0.99 1.68 1.34 3.07 3.73 3.40

average 1.65 2.23 1.94 3.73 4.27 4.00

R R

no yes average no yes average

0 1.05 1.07 1.06 3.00 2.99 3.00

-1 2.25 3.39 2.82 4.45 5.55 5.00

average 1.65 2.23 1.94 3.73 4.27 4.00

I I

no yes average no yes average

0 1.06 1.06 1.06 2.99 3.00 3.00

-1 4.03 1.61 2.82 6.20 3.79 5.00

average 2.55 1.34 1.94 4.60 3.40 4.00

'All 6 tables are averaged over flie 3 sets of reference group parameters. The top 2 tables
are averaged over focal group populations (F). The middle 2 tables are averaged over
inclusion conditions (I). The bottom 2 tables are averaged over rescaling conditions (R).
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Table 7

Chi-Square Results for Mantel and GMH Procedures
Means, Standard Deviations, and Rejection Rates (a. = .05) for 600 Replications'

Type of DIF
Mantel (df=1) GMH (dfl)

SD .y2 I % rejectMean f SD y2 % reject Mean x2

NULL 0.99 1.41 4.33 3.07 2.44 4.83

Constant .1 2.21 2.71 17.83 4.15 3.22 11.17

Constant .25 8.23 5.73 75.67 10.24 6.14 59.83

Balanced .1 1.00 1.32 4.50 3.42 2.64 6.83

Balanced .25 0.94 1.29 4.00 5.71 4.00 24.67

Shift Low .1 1.13 1.56 6.00 3.42 2.79 7.83

Shift Low .25 1.72 2.29 13.17 4.32 3.32 13.00

Shift High .1 1.31 1.76 7.33 3.35 2.73 8.00

Shift High .25 1.78 2.41 14.00 4.61 3.61 16.50

'Results are averaged over the 3 sets of reference group parameters and the 2 focal group
distributions.
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Table 8

Results for SMD and Yanagawa and FuJii Statistics
Means and Standard Deviations for 600 Replications'

Type of DlF
SMD

Yanagawa and Fujii

YF1 YF2 YF3

Mean SD Mean SD Mean SD Mean SD

NULL 0.014 0.054 1.090 0243 1.152 0.282 1.231 0.353

Constant .1 -0.034 0.056 1.159 0.268 1.329 0317 1.539 0.461

Constant .25 -0.110 0.060 1.284 0.305 1.650 0.400 2.151 0.627

Balanced .1 0.012 0.053 1.183 0.264 1250 0.304 1.225 0.354

Balanced .25 0.008 0.053 1.338 0.288 1.419 0.336 1.229 0.362

Shift Low .1 -0.004 0.055 1.176 0.252 1.249 0.299 1.334 0.383

Shift Low 25 -0.026 0.059 1.306 0.295 1.377 0.333 1.477 0.444

Shift High .1 -0.005 0.057 1.113 0.241 1.152 0.261 1.386 0.406

Shift High .25 -0.022 0.058 1.084 0.232 1.133 0.269 1.527 0.446

'Results are averaged over the 3 sets of reference group parameters and the 2 focal group
distributions.
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Table 9

Theoretical Values for the Yanagawa and Fujii
Statistic Under the Partial Credit Model*

(c = amount of DIF)

YF1 YF2 YF3

c c c

Type of
DT Formula .1 .25 Formula .1 .25 Formula .1 .25

Constant exp c 1.05 1.28 exp (2c) 1.22 1.65 exp (3c) 1.35 2.12

Balanced exp c 1.05 128 exp c 1.05 1.28 1 1 1

Shift Low exp c 1.05 1.28 exp c 1.05 1.28 exp c 1.05 1.28

Shift High 1 1 1 1 1 1 exp c 1.05 1.28

*For the null case, the theoretical values for YF, n = 1, 2, 3, are unity.
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